IOWA STATE UNIVERSITY EE/CprE/SE 492

IoT: Automated Inventory Management & Route Optimization

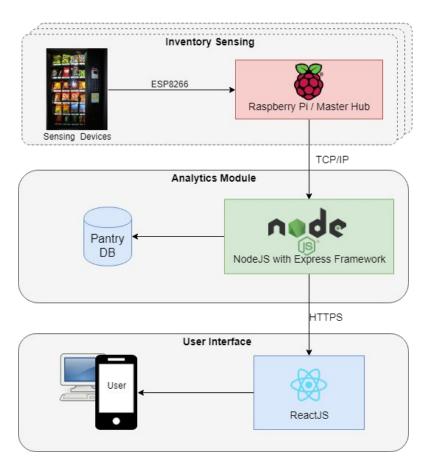
Team: sdmay19-29 Adviser: Goce Trajcevski Client: Jimmy Paul (Crafty, LLC)

Team Members

David Bis, Adam Hauge, Noah Bix, Hanna Moser, Samuel Guenette, Ben Gruman

Outline

- Motivation and Solution
- Requirements
- Feature Highlights
- Implementation
- Testing Results
- Challenges
- Future Plan


Motivation & Problem Statement

- Crafty delivers food to office pantries
 - Crafty employee stationed at each office
 - Keep track of inventory and reorder items
 - Trucks restock multiple offices based on individual orders
- Issues
 - Added expense for gas and labor
 - Human error
 - Time inefficiency
 - Route Inefficiency

Craft A Better Workplace

Block Diagram

Market Survey

- Impinj Automatic inventory management with RFID
- **Barcodes, Inc.** Inventory management with barcode scanners
- Route4Me Optimal route planning

Functional Requirements

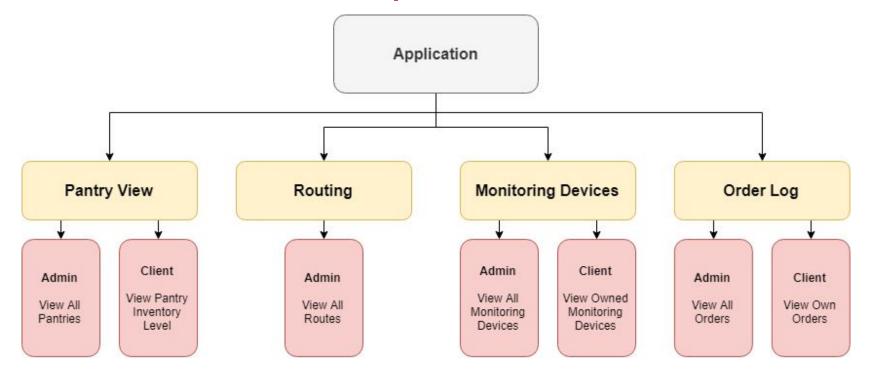
Sensor Network

FR.1: Transmit product quantities individually

FR.2: Sensor arrays fit all stockrooms

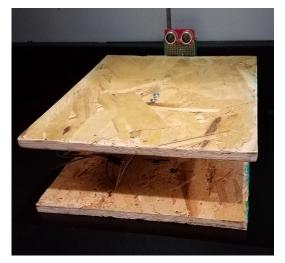
Analytics Software

FR.3: Create optimal delivery routes


FR.4: Display & monitor the stockroom inventory data

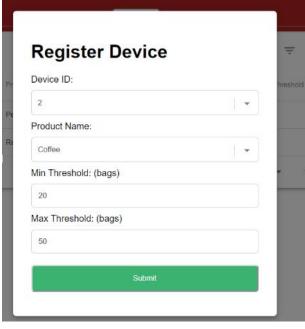
Non-Functional Requirements

- **Scalability** The sensor nodes should fit into multiple pantries
- **Data Integrity** Sensors should be accurate and consistent over their lifetime
- **Availability** Inventory should update at least once every weekday
- **Deployment** New sensor devices should automatically detected by master
- **Usability** User interface should be intuitive
- **Resilience** Sensor network should be protected from typical motions of pantry inventory

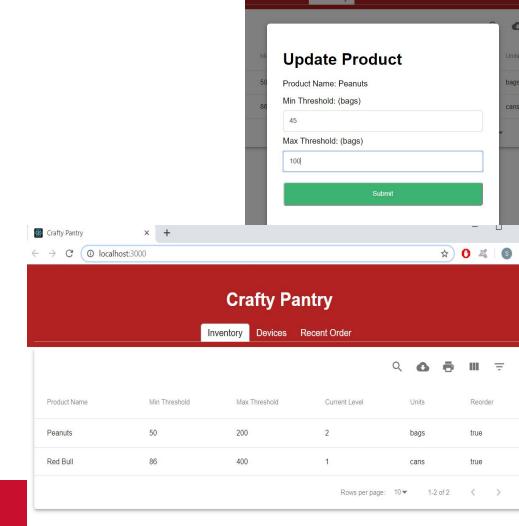

Feature Highlights

Functional Decomposition - Website

Monitoring Devices

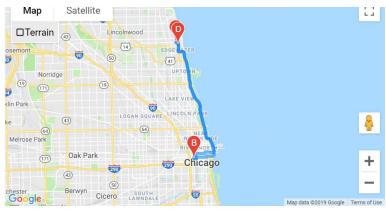

- Monitors product weight and sonar (distance)
- Master Raspberry Pi collects and communicates sensor data to server
- Each monitoring device powered by ESP8266

Device Registration


- Add monitoring devices
- Modify monitored product per device

	Invento	ory Devices Rece	ent Order	
		Q	○ ē Ⅲ ₹	REGISTER DEVICE
Device ID	Product Name	Min Threshold	Max Threshold	Units
1	Peanuts	50	200	bags
41019	Diet Coke	1	20	cans
			Rows per page: 10 ▼	1-2 of 2 < >

Pantry Inventory


- Display product levels
- Adjust product thresholds

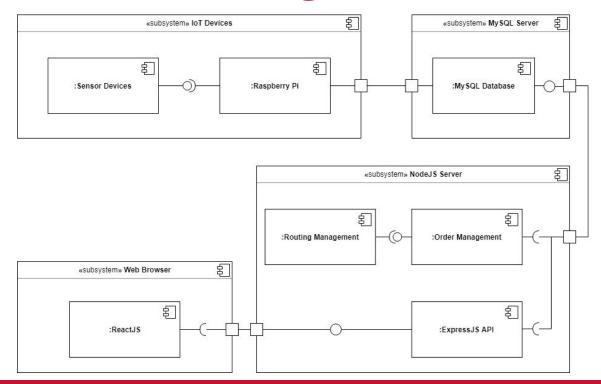
Route Optimization

- Based on most recent order, optimal route for fleet of trucks is calculated
- New route is automatically generated each day

	Inventory Devices OrderLog Routing
	Order ID: 83
	Company: Vail Systems
	Q 🙆 🖶 III. 👳
Product Name	Order Size
Diet Coke	2
	Rows per page: 10 ▼ 1-1 of 1 < >

Route Details

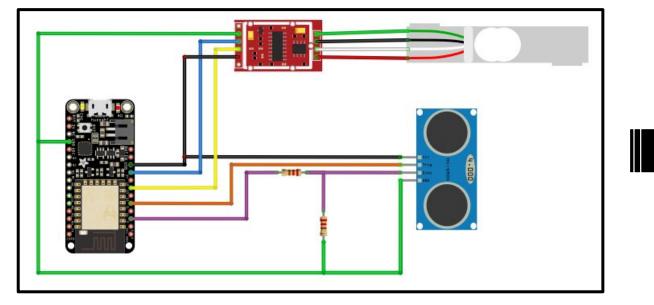
CRAFTY WAREHOUSE: 6056 N Broadway, Chicago, IL 60660
 Vail Systems: 2 N Riverside Plaza, Chicago, IL 60606
 Apple Inc: 1315 W Granville Ave, Chicago, IL 60660
 CRAFTY WAREHOUSE: 6056 N Broadway, Chicago, IL 60660

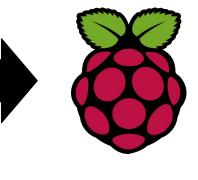

Routing Algorithm

- Improved Clarke-Wright Savings Algorithm
 - Destinations are added into a route starting from greatest "savings" to least "savings"
- Considers following constraints:
 - Maximum truck capacity
 - Expected daily traffic variance
 - Route time estimation limit
- Generates automatically based on most recent order data
- Improved Savings Equation:

Savings(i,j) = [dist(1,i) + dist(j,1) - dist(i,j)] * trafficFactor(mergedRouteDistance)

Implementation


Implementation Diagram



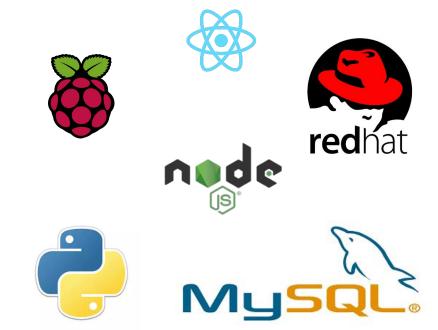
Detailed Design - Sensor Network

Sensor Module Components

Raspberry Pi

Hardware/Software/Tech Platforms

• Sensors


- Weight sensor
- HC-SR04 Ultrasonic distance sensor

• Monitoring Device

- Raspberry Pi OW (Master Component)
- ESP8266 (Slave Component)
- Python

Web Component

- ReactJS
- NodeJS Backend Processing
 - Sequelize API to Query Database
 - ExpressJS for REST API
- MySQL Database
- Redhat 7 Server

Resources and Cost Estimation

• Sensor Network

- Master Microcontroller: \$30
- Sensor Array: \$50 / module

• Analytics Software

- All used software is free of charge
- Labor Resources
 - Required for sensor network maintenance

Functional Test Results

- The Mocha Testing Framework and Postman produce expected results
 - Unit tests exist for all relevant business logic code blocks
- Routing algorithm tested run-time based on *n* destinations
 - Expected input size will be no greater than *n* = 100

n Time (s) 10 0.003 100 23.1 200 543.9

IOWA STATE UNIVERSITY

Routing Algorithm Stress Testing

Non-Functional Test Results

- **Scalability** All sensors successfully detected through the system
- **Data Integrity** Both *.csv* files are equivalent
- Availability Order delivery routes successfully generated
- **Deployment** All new sensor modules discoverable by the network
- **Usability** Automated time less than a minute
- **Resilience** Sensor devices remain accurate after a semester of use

Demo Video

Challenges

- Interdisciplinary team required collaboration for solution
- Routing problem is derivative of Vehicle Routing Problem (NP-Hard)
- Managing an ad-hoc sensor network of variable sizes

What We Learned

- API and language conventions
- Managing IoT communication
- Various route optimization algorithms
- Interdisciplinary teamwork

Future Plans

- The project will be handed back to Crafty LLC for further development
 - Improve Scale Construction
 - Improve Device Registration
 - Improve Routing Algorithm
 - Traffic Abnormalities
 - Fine Resolution in Traffic Variance

Task Responsibility/Individual Contributions

David Bis — Back-end Developer, Meeting Facilitator

Sam Guenette — Back-end Developer, Public Relations

Hanna Moser — Front-end Developer, Meeting Scribe

Adam Hauge — Network Architect, Report Manager

Ben Gruman — Hardware Architect, Resource Acquisition

Noah Bix — Hardware Architect, Documentation Manager

