IOWA STATE UNIVERSITY EE/CprE/SE 491

Automating Inventory Management: Routing Through Sensor Networks

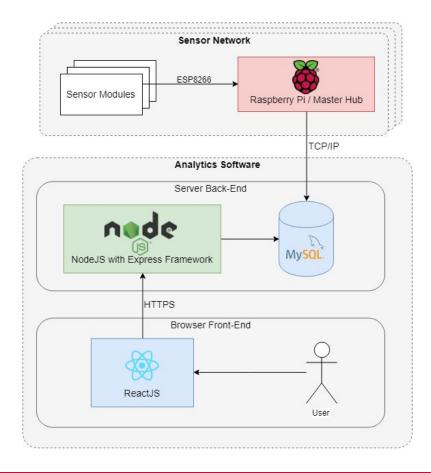
Team: sdmay19-29 Adviser: Goce Trajcevski Client: Jimmy Paul (Crafty, LLC)

Team Members

David Bis, Adam Hauge, Noah Bix, Hanna Moser, Samuel Guenette, Ben Gruman

Outline

- Motivation and Solution
- Requirements
- Technical and Market Considerations
- Resource and Cost Estimations
- Design Decomposition
- Testing
- Current Status
- Future Plan


Motivation & Problem Statement

- Crafty delivers food to office pantries
 - Crafty employee stationed at each office
 - Keep track of inventory and reorder items
 - Trucks restock multiple offices based on individual orders
- Issues
 - Added expense for gas and labor
 - Human error
 - Time inefficiency
 - Route Inefficiency

Craft A Better Workplace

Block Diagram

Functional Requirements

Sensor Network

FR.1: Transmit product quantities individually

FR.2: Sensor arrays fit all stockrooms

Analytics Software

FR.3: Create optimal delivery routes

FR.4: Display & monitor the stockroom inventory data

Non-Functional Requirements

- **Scalability** The sensor nodes should fit into multiple pantries
- **Data Integrity** Sensors should be accurate and consistent over their lifetime
- Availability Inventory should update at least once every weekday
- **Deployment** New sensor devices should automatically detected by master
- **Usability** User interface should be intuitive
- **Resilience** Sensor network should be protected from typical motions of pantry inventory

Technical Considerations and Constraints

- Master System Raspberry Pi vs. Arduino
- Choice of Sensors Load cell, sonar, barcode scanner
- **Database** MySQL vs. MongoDB

Market Survey

- Impinj Automatic inventory management with RFID
- **Barcodes, Inc.** Inventory management with barcode scanners
- **Route4Me** Optimal route planning

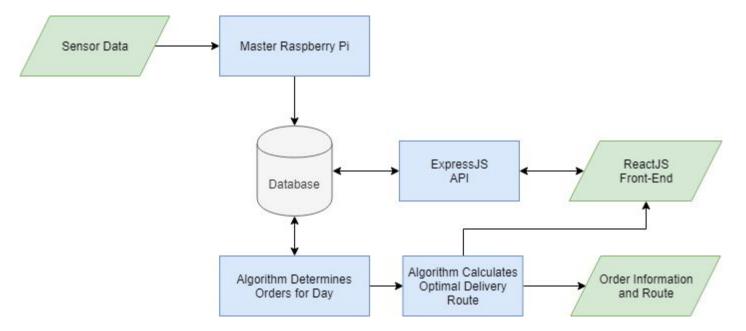
Potential Risks & Mitigation

- Sensor Degradation Sensors may not stay calibrated over time
 - Response Strategy Calibrate the sensors on a regular basis
- **Communication** Back-end cannot directly communicate with sensor networks
 - Response Strategy Employ failsafe detection if sensor network does not communicate within expected time interval
- **Routing Inaccuracy** Route time estimations are variable due to traffic conditions
 - Response Strategy Use Google Maps API to account for traffic

Resources and Cost Estimation

Sensor Network

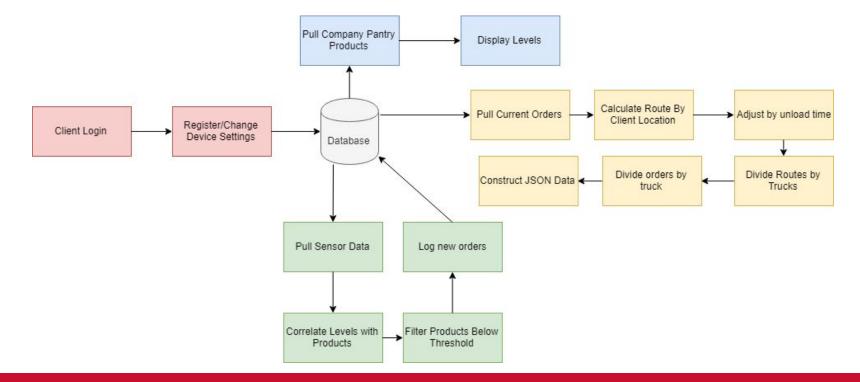
- Master Microcontroller: \$60.94
- Sensor Array: \$40.00
- Analytics Software
 - All used software is free of charge
- Labor Resources
 - Required for sensor network maintenance


Project Milestones & Schedule

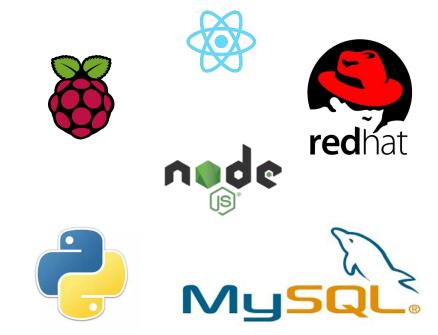
• **Proof-Of-Concept** (October 25th, 2018)

• Minimum Viable Product (March 15th, 2019)

• **Finalized Product** (April 15th, 2019)


Functional Decomposition

Detailed Design 1 - Sensor Network


Sensor Module Components Raspberry Pi Database

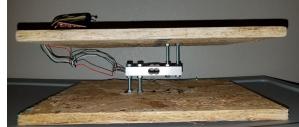
Detailed Design 2 - Analytics Software

Hardware/Software/Tech Platforms

- Web Component
 - ReactJS
 - NodeJS Backend Processing
 - Sequelize API to Query Database
 - MySQL Database
 - Redhat 7 Server
- Monitoring Device
 - Raspberry Pi 3 (Master Component)
 - ESP8266 (Slave Component)
 - Python
- Sensors
 - Weight sensor
 - HC-SR04 Ultrasonic distance sensor
 - Barcode scanner

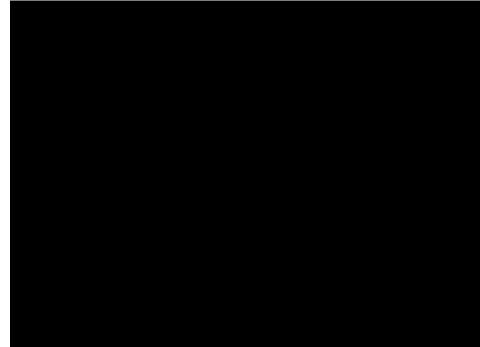
Functional Test Plan

- Software Testing
 - Mocha & Chai unit testing
 - Mock data & expected outputs
 - Real World Testing
- Hardware Testing
 - Python script testing
 - Verify established connections with sensor arrays
 - CSV Log
- Integration Testing



Non-Functional Test Plan

- **Scalability** Connect *k* sensors to network and verify displayed on front-end
- Data Integrity Track data on Raspberry Pi to compare to database value
- **Availability** Reorder EOD and verify new order/delivery route next morning
- **Deployment** Setup network in desired location and verify functionality
- **Usability** Track automatic and manual tracking/reorder time and compare
- **Resilience** Check accuracy in sensor reading every month


Prototype Implementations: Current Status

- Weight Sensor Implementation
- Barcode Scanner Implementation
- Master-Slave Network Setup
- Database Setup
- Back-End processing setup
- Front-End Screen Sketches

	Devices	Crafty	Inventory	
Θ	Product Name(s) anme> ProductName1 ProductName3 ProductName4 Clear All		Reorder Status Reordered	
Product Name	Product ID	Inventory Level	Reorder Status	Threshold
<name></name>	<id></id>	<level></level>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<level></level>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<level></level>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<level></level>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<level></level>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<evel></evel>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<level></level>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<evel></evel>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<level></level>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<level></level>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<evel></evel>	<status></status>	<threshold></threshold>
<name></name>	<id></id>	<level></level>	<status></status>	<threshold></threshold>

Current Project Status with Respect to Milestones

Task Responsibility/Individual Contributions

David Bis — Back-end Developer, Meeting Facilitator

Sam Guenette — Back-end Developer, Public Relations

Hanna Moser — Front-end Developer, Meeting Scribe

Adam Hauge — Computer Network Architect, Report Manager

Ben Gruman — Hardware Architect, Resource Acquisition

Noah Bix — Hardware Architect, Documentation Manager

Plan for Next Semester

- Incorporate multiple sensors
- Implement multiple sensor arrays
- Construct orders based on live data
- Configure route optimization
- Front-End Implementation
- Validation Does it save time/money?

